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Abstract
We introduce a novel methodology, based on in situ X-ray tomography measurements, to quantify and analyze 3D crack 
morphologies in biological cellular materials during damage process. Damage characterization in cellular materials is chal-
lenging due to the difficulty of identifying and registering cracks from the complicated 3D network structure. In this paper, 
we develop a pipeline of computer vision algorithms to extract crack patterns from a large volumetric dataset of in situ X-ray 
tomography measurement obtained during a compression test. Based on a hybrid approach using both model-based feature 
filtering and data-driven machine learning, the proposed method shows high efficiency and accuracy in identifying the crack 
pattern from the complex cellular structures and tomography reconstruction artifacts. The identified cracks are registered 
as 3D tilted planes, where 3D morphology descriptors including crack location, crack opening width, and crack plane ori-
entation are registered to provide quantitative data for future mechanical analysis. This method is applied to two different 
biological materials with different levels of porosity, i.e., sea urchin (Heterocentrotus mamillatus) spines and emu (Dromaius 
novaehollandiae) eggshells. The results are verified by experienced human image readers. The methodology presented in 
this paper can be utilized for crack analysis in many other cellular solids, including both synthetic and natural materials.
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Introduction

Cellular structures or foams are widely found in natural 
material systems with a variety of microstructure types, 
including honeycombs (e.g., cork), closed-cell foams (e.g., 
porcupine quill and plant parenchyma), and open-cell foams 
(e.g., trabecular bone and sea urchins spines) [1, 2]. These 
natural cellular materials usually function as mechanical 
support—a bony skeleton must support body weight and 
prevent external mechanical damage, for instance. Compared 
to the fully organic (e.g., wood, cork, porcupine quill, etc.) 
and partially mineralized (e.g., trabecular bone) biological 
cellular materials, the porous microstructure of echinoderm 
skeletal elements represents a unique class of biological 
ceramic cellular materials due to its high mineral density 
(> 98.4 wt%) [3] and excellent damage tolerance [4–6]. This 
is in stark contrast to many synthetic ceramic cellular solids, 
which often exhibit immediate structural degradation when 
loading exceeds the structure’s strength, leading to limited 
energy absorption capabilities [7–9].
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Echinoderms (including sea stars, sea urchins, sand dol-
lars, brittle stars, etc.) are a group of marine invertebrates 
(phylum Echinodermata) characterized by their highly 
organized and protective mineralized skeletons [10–13]. For 
example, the spines of sea urchins provide protection from 
the impact, wear, and fracture resulting from hydrodynamic 
forces of waves (many sea urchins live in the intertidal zone) 
as well as from predators [14]. The echinoderm skeletons 
are among the most amazing biomineralized structures in 
nature: a complex bicontinuous porous structure with a con-
trolled gradient in porosity and structural parameters [13, 15, 
16]. Despite their single-crystal nature based on inherently 
weak, brittle magnesium calcite [15, 17], echinoderm skel-
etons exhibit high strength, and, more importantly, grace-
ful failure through the so-called conchoidal fracture, where 
cracks are believed to be scattered by the complex porous 
structure to prevent catastrophic failure [4–6].

Unlike polymeric and metallic foams, crack formation 
and propagation are the primary deformation mode for 
ceramic foams. Therefore, precise detection of crack genera-
tion and quantitative analysis of their characteristics, such as 
sizes, crack opening (and related crack tip opening displace-
ment), and propagation direction, are critical for understand-
ing deformation behavior and the entire damage process of 
these materials. In this regard, in situ X-ray tomography 
is an excellent characterization platform in comparison to 
previous studies that are primarily based on postmortem 
analysis. In situ X-ray tomography has recently been widely 
utilized to investigate the mechanical behavior of a variety of 
synthetic structural materials [18, 19], including cellular sol-
ids. However, few studies have used in situ X-ray tomogra-
phy to investigate the deformation and fracture mechanisms 
of biological cellular structures, particularly echinoderm 
porous skeletons. Traditionally, 2D damage characterization 
is implemented by observing and tracking the propagation 
of cracks from 2D images of sample surfaces. This process 
is usually conducted manually by expert human image read-
ers, and the samples are often limited to be solid materials 
with a few cracks. It is very challenging to apply the manual 
2D analysis methods for investigating crack characteristics 
in ceramic cellular solids, where a high-density cracks of 
various sizes form and propagate simultaneously inside the 
complex 3D porous structure. We need an efficient crack 
detection algorithm to account for the complexity and 3D 
nature of bio-cellular material systems.

In the past few years, several studies have attempted 
to identify damage using computer vision approaches to 
replace the slow and subjective manual inspection proce-
dures for fast and reliable defect analysis. Many computer 
vision algorithms have been proposed, including threshold-
ing [18, 19], segmentation [20], edge detector [21, 22], and 
filter-based algorithms [23]. These have been used to detect 
damage on pavement surfaces [20–25], bridge surfaces [26], 

wood samples [27, 28], and steel [29]. These automated 
algorithms, while being significantly faster than manual 
inspection, have been mainly developed under specific 
hypotheses for 2D images; they cannot be generalized to 
3D applications with various environmental background, 
irregularly illuminated conditions, shading, and blemishes. 
Recently, advanced machine learning techniques have been 
developed to solve the image classification [30], recon-
struction [31–33], and object detection [34, 35] problems 
by learning from the database adaptively and fine-tuning 
on the basis of exhaustive examples. A successful exam-
ple has been the development of R-CNN method by Gir-
shick et al [34]. This method identifies a targeted objects 
by proposing the regions of interest and classifying them 
via a convolutional neural network (CNN) of feature vec-
tors. The dual-step approach has been successfully applied 
to face recognition [35, 36], animal identification [37], and 
car localization [38–40]. The promising results have moti-
vated the application of deep learning techniques to damage 
detection. For example, Cha et al. [41] use a sliding window 
to divide the image into blocks and apply CNN to predict 
the existence of cracks in pavement damage. Zhang et al. 
[42] use CNN to identify pixels in the pavement image that 
belongs to a crack, based on local patch information. Later, 
Li et al. [43] developed an algorithm similar to R-CNN on 
electron microscopic images to study irradiation damage of 
metal alloys, which uses object detection to propose a dam-
age region first and then categorizes damage types with a 
CNN classifier. However, these learning-based methods have 
been mainly applied to 2D images, where cracks are sparsely 
located on a solid background with minor noise or texture. In 
the context of cellular materials with complex 3D structures 
as the background, these damage detection algorithms are 
no longer suitable. To solve the problem, we need to first 
recognize the crack patterns against a strong and structured 
background that cannot be easily erased or filtered out. Sec-
ond, we need to implement the analysis in 3D to include 
the 3D morphology features and damage distribution. For 
instance, to understand how the 3D porous network of sea 
urchin spines regulates the orientation of the crack planes 
and the propagation of crack to prevent catastrophic failure 
[4–6], we must register the position and orientation of the 
cracks in reference to the hosting branches on the cellular 
networks. Such 3D information is critical for understanding 
the structure–mechanical property relationship of this class 
of materials, which may provide guidelines for the design of 
bio-inspired low-density materials.

In this paper, we report a 3D automatic crack detection 
and analysis methodology based on in situ synchrotron-
based X-ray micro-computed tomography (µ-CT), which 
identifies, registers, and analyzes cracks in 3D in com-
plicated biological ceramic cellular solids. This computer 
vision-based pipeline for 3D crack analysis consists of 
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four steps, including (1) µ-CT imaging reconstruction 
and enhancement, (2) the initial crack extraction based 
on a feature map library, (3) crack identification based on 
supervised machine learning, and (4) 3D crack registra-
tion and analysis. The process presented here is fast, only 
requiring approximately 20 min on a GPU (graphics pro-
cessing unit)-based laptop computer to detect and register 
all cracks over a field of view of 1 mm3, with over 200 
mega voxels in the volume. We validate this approach on 
two types of biological materials with different levels of 
porosity (sea urchin spines and emu eggshells), and we 
compare the end product of 3D crack visualization with 
human labeling. Results of the tested samples demon-
strate successful elimination of the background structure 
and the CT reconstruction artifacts. Our method generates 
comparable or better results than that of human readers.

Methods

The pipeline for 3D crack detection, registration, and 
analysis is schematically described in Fig. 1 with four 
steps of (I) CT data acquisition and reconstruction, (II) 
feature-based crack detection, (III) machine learning 
refinement, and (IV) 3D crack registration and analysis. 
The following sections describe the 4-step process.

Step I: CT Data Acquisition and Reconstruction

The in situ mechanical measurement in compression mode 
on the biological material samples was conducted at beam-
line 2-BM at the Advanced Photon Source at Argonne 
National Laboratory. The biological cellular material models 
used in this work include a sea urchin spine from Hetero-
centrotus mamillatus and the shell fragments from commer-
cially sourced emu eggs (Dromaius novaehollandiae). Sea 
urchin spine is a representative porous biological material 
system with a porosity of ~ 60–80%. Such cellular structures 
are widely found in nature. It is reported to be simultane-
ously lightweight, strong and damage-tolerant. In the CT 
scans, X-ray resolves the pores and cracks with the same 
intensity, making it difficult to distinguish cracks from the 
background via traditional threshold-based segmentation 
methods. Emu eggshell is a structural composite with an 
upper porous layer and inner dense layer. The complexity 
of crack detection originates from the lack of contrast for 
small initial cracks (microvoids), which are generated in 
large numbers during the crack initiation and early crack 
propagation stages. These sample systems are chosen to 
demonstrate the efficiency of detecting cracks of various 
sizes and contrast in cellular material systems.

The in situ experimental setup used in this work is shown 
in Fig. 2a. The samples were cut in cube shapes and placed 
between compression platens, where the top compression 
platen was driven by the linear actuator on the top of the 
device to apply the compression force in the z direction. A 

Fig. 1  Pipeline of crack characterization, including four steps of CT data acquisition (I), crack feature detection (II), refinement via machine 
learning (III), and 3D crack registration (IV)
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minimum displacement rate of 0.008 mm/s was used in this 
work. A time-lapse measurement was adopted, where the 
actuator was stopped multiple times during the compression 
test for the tomographic scan. We implement the damage 
detection in datasets at early stages to focus on crack initia-
tion and early propagation, which are more significant to the 
materials’ mechanical properties and are more technically 
challenging. Figure 2b and c shows two typical projection 
images of the sample at different stages of compression. 
Tomography scanning was conducted by rotating the speci-
men 180° (rotation speed, 0.5°/s), where 1500 projections 
with an exposure time of 0.24 s each were acquired. The 
energy of the X-ray beam used in the µ-CT measurement 
was 27.4 keV. A PCO Edge high-speed camera equipped 
with a 5 × objective lens was used to collect the projection 
images and the resolution of the reconstructed volumetric 

data is (1.3 µm)3/voxel. The dimensions of samples used in 
the in situ tests were ~ 2.2 mm × 2.2 mm × 1.7 mm for sea 
urchin spines and ~ 2.0 mm × 2.0 mm × 1.5 mm for emu 
eggshells.

The open software TomoPy [44] was utilized for the 
image reconstruction. Several de-noising algorithms imple-
mented in TomoPy were applied to suppress noise and arti-
facts of reconstruction, including smoothing filtering of the 
sinogram to correct for bad pixels on the detector, back-
projection filtering to suppress high-frequency artifacts, and 
phase diffraction correction based on transport of intensity 
equation [44]. After the reconstruction, a 3D volumetric 

dataset containing 2560 × 2560 × 1280 voxels was gener-
ated for each tomography scan. Figure 2d shows a typical 
reconstruction slice for the sample of sea urchin spines. In 
this study, representative volumes from the central regions 
of the samples (1880 × 1620 × 300 voxels) at compression 
strains of 18% and 22.8% for the sea urchin spine and the 
emu eggshell, respectively, were extracted and used for the 
development of crack detection and analysis algorithms.

Step II: Feature‑Based Crack Detection

The automatic crack detection approach defines the crack 
patterns with the feature map library, which describes the 
crack locally as a high contrast notch representing a narrow 
gap. The profile of a notch pattern in a local patch in the xy 
plane is defined as a rectangular function via

where w is the width of the crack opening, � is the tilting 
angle of the crack, and L is the length of the crack. In bio-
logical cellular materials, cracks form with various sizes 
and lengths. We establish the crack library only for short 
local crack patterns in a small patch area of L × L pixels 
and identify the extended cracks as a series of smaller local 
notches aligned and attached together. This localized method 
registers all types of cracks and their possible wavy shapes 
based on the reduced crack pattern library, which substan-
tially reduces the computational cost of detecting large num-
bers of small and twisty cracks in the cellular materials.
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{
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1, otherwise

Fig. 2  Synchrotron-based in  situ X-ray tomography measurement. a 
Experiment setup for conducting in situ compression tests. The sam-
ples are placed in between two compression platens and compressed 
by controlling the actuator on top. Side view projection images of a 

tested sea urchin spine sample before (b) and during compression 
(c). d A representative horizontal slice of reconstructed tomography 
image of the same sample. The yellow line in c indicates the location 
of the horizontal slice



Integrating Materials and Manufacturing Innovation 

1 3

We build the local crack feature libraries considering all 
possible orientations, widths, and lengths in the small patch 
of size L × L , based on the observation of crack patterns 
from the databases and resolution limits. For the sea urchin 
spine samples, a total of 432 notch patterns are included 
with 36 orientations across the 180° span at 5° intervals, 
4 different widths from one to four pixels incremented by 
one-pixel each, and 3 different aspect ratios. For the emu 
eggshell samples, which demonstrate larger width spread, a 
total of 648 notch patterns are included with 36 orientations 
across the 180° at 5° intervals, 6 different widths from one 
to six pixels incremented by one-pixel each, and 3 different 
aspect ratios. Several notch pattern examples in the crack 
library are shown in Fig. 1 for Step II.

We then correlate the CT reconstructed slices with the 
crack library in xy , yz , xz planes. The 432 feature maps for 
sea urchin spine sample and 648 feature maps for the emu 
eggshell sample are generated by scanning the notch patterns 
as correlation filters across the CT reconstructed slices with 
normalized cross-correlation. We evaluate the local patch 
of each pixel to see if it matches any of the 432/648 crack 
patterns. An initial crack filtering is then implemented by 
thresholding with the maximum correlation value for each 
pixel. The highly correlated locations indicate a high prob-
ability of finding a crack, and the highly correlated filter at 
this location reveals the shape of the potential crack.

Step III: Refinement of Crack Detection Based 
on Supervised Machine Learning

Step II is a model-based 2D crack detection method based on 
feature filtering. The proposed crack candidates from Step II 
are refined in the machine learning Step III to enhance the 
accuracy of detection based on nonstandard features beyond 
the feature library. In this step, we calibrate the crack detec-
tion from manually labeled crack data, which is used to train 
a convolutional neural network (CNN) classifier. The com-
bination of the model-based pre-filtering step and the data-
driven refinement step proves to provide high accuracy with 
minimum computational cost and a small dataset size, as 
compared to model-only or data-only approaches.

The feature-based filtering in Step II is based on 2D 
images and prone to 2D reconstruction artifacts and noises. 
These artifacts and noises, however, are uncorrelated across 
different reconstruction slices, while the crack formation is 
continuous in the 3D volume. Combining adjacent slices 
along the z axis can, therefore, provide additional structural 
information that helps the CNN to distinguish the recon-
struction artifacts from the actual structure and cracking. 
Our CNN classifier extend the 2D input to semi-3D by stack-
ing the adjacent three slices around the proposed 2D cracks. 
Isolated crack notches without extension to the neighboring 
slices were deleted. This 3D continuity validation is shown 

to efficiently remove false detections efficiently from the 
artifacts of the CT reconstruction.

Data Preparation

The CNN classifiers in Step III were trained on two data-
bases, the sea urchin spine and emu eggshell, respectively. 
For sea urchin spine samples, we cropped two different 
regions without overlapping for training and testing. The first 
region contains 201 slices with the image size of 396 × 438 
and the second one contains 181 slices with the image size 
of 560 × 312 . The emu eggshell database contains 100 
slices with the size of 706 × 575 . The first 10 slices were 
used for testing, and the last 80 slices were used for train-
ing. Each testing slice was annotated and checked by three 
experienced annotators manually. The input of the network 
contains patches of manually identified cracks with the size 
of 32 × 32 × 3 voxels. We set the crack/non-crack ratio in 
the training data as 1:3, as suggested in Ref. [45]. A total of 
40,000 image patches were used for the sea urchin sample 
and 20,000 patches for the emu eggshell sample.

Network Architecture and Implementation

As illustrated in Fig. 1, we used a simple CNN network 
with three convolutional (conv) layers, four Relu (rectified 
linear unit) layers and three max-pooling layers, two fully 
connected (FC) layers, and one softmax layer. Extracted 
image patches with the sizes of 32 × 32 × 3 with zero center 
normalization were used as the input of the network, fol-
lowed by three blocks of Conv–Relu–Maxpolling layers. 
The convolutional layers were equipped with a kernel of 
3 × 3 and a stride of 1, whose effectiveness has been verified 
in VGG-Net. No padding was used since each crack patch 
is centered at the input. The number of kernels was con-
ventionally set as 32, 64, and 128 filters, respectively. The 
number of Conv–Relu–Maxpolling blocks was chosen to be 
3 to adapt to the complexity of the classification problem. 
All convolution layers were constructed with a stride of 1 
and padded by 2. The Relu function was applied to provide 
nonlinearity after the convolution layer, and we used a max-
pooling layer with the filter size of 3 × 3, stride [2, 2] and 
no puffing after the Relu layer. After three-block operations, 
we applied a fully connected layer of 64 nodes followed by 
a Relu layer and another fully connected layer of 2 nodes as 
the classification layer to detect crack and non-crack. The 
softmax function was used as the final output layer to give 
the output category for each input image.

The training dataset was split into training and valida-
tion sets with the ratio of 9:1 to prevent over-fitting. We 
implemented the training on MATLAB 2018b with the Deep 
Learning Toolbox. The machine used for our experiments 
was a PC with Intel Core i7-6700 K 4.0-GHz CPU, 32-GB 
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RAM, GeForce GTX 960 2 GB GPU. All the parameters in 
this neural network were initialized using a Glorot initializer, 
which independently samples from a uniform distribution 
with zero mean and variance 2/(nin + nout ), where nin and nout 
indicate the number of input and output units in each layer. 
Data were fed into the CNN in a mini-batch size of 32. The 
cross-entropy loss for binary classification was optimized 
with ADAM algorithm with L2 regularization set to 0.01. 
The initial learning rate was 0.001 with a learning rate drop 
factor of 0.01 every 10 epochs. The maximum number of 
epochs was set as 30. The dropout method was used after the 
first fully connected layers to reduce over-fitting by prevent-
ing complex coadaptions on the training data. The validation 
dataset was used to monitor the network quality during train-
ing and provide the stop criterion. In all experiments, the l1
-norm over the validation dataset, i.e., the validation error, 
was computed every 100 gradient steps. The training was 
stopped once no improvement in the validation error was 
found for 10,000 gradient steps.

Step IV: 3D Crack Registration

The refined crack results detected in Step III are then reg-
istered as 3D objects by combining with the shape infor-
mation identified in Step II. In this step, we used cluster 
analysis to combine spatially connected 2D cracks as one 3D 
crack. Each of the crack clusters was then registered as a 3D 
object and fitted into a 3D plane with a principal component 
analysis (PCA) algorithm. The principal component with the 
least variation is identified as the crack plane orientation. By 
projecting every surface point of one 3D crack, the average 
projection distance is defined as crack opening width and the 
projection area is defined as crack plane area. We registered 
the center location, crack opening width, crack plane orien-
tation, and crack plane area. The end result was a set of 3D 
registered crack planes throughout the volume.

Results and Discussion

In this study, we selected two model natural ceramic mate-
rials with different porosity levels and morphologies, sea 
urchin spines and emu eggshells, to demonstrate the pro-
posed methodology for crack detection analysis by using 
the micro-X-ray computed tomography coupled with in situ 
compression tests.

Structures of Model Material Systems and Observed 
Damage Behavior

Figure 3a shows a typical cellular structure of the sea urchin 
spines from H. mamillatus, with its characteristic bicontin-
uous network, also known as stereom, and highly curved 
structures. A high-magnification scanning electron micro-
graph in Fig. 3b shows the classical non-cleavage fractured 
surface, although sea urchin spines are known to consist of 
single crystals [15, 17]. The fracture planes do not coincide 
with a specific internal feature, such as branch connection 
points or the middle of branches. Some cracks even propa-
gate along the longitudinal direction of branches, resulting 
in a large fracture plane compared to the transverse fracture 
of individual branches. This so-called conchoidal fracture is 
believed to contribute to the graceful failure of the biominer-
alized cellular structure [5, 6, 45]. Although these 2D imag-
ing approaches are important for examining the morphology 
of the fracture surfaces, their 3D information, as referenced 
in the underlying cellular network, cannot be obtained with 
this method.

Similar to other eggshells, the main structural component 
in emu eggshells is a calcified layer consisting of vertical 
columnar crystals, where isolated microscopic pores and 
vertical pore canals are present (Fig. 4a). We utilize this 
shell structure to further evaluate our crack detection and 
analysis algorithm. As shown in Fig. 4b–e, upon compres-
sion the eggshell developed both several primary cracks 
as well as a large number of secondary cracks. The cracks 

Fig. 3  Cellular structures in sea urchin spines (Heterocentrotus mamillatus) as revealed by scanning electron micrographs at different magnifica-
tions (a, b) and µ-CT (c)
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are affected by the presence of microscopic pores and pore 
canals.

Crack Detection Results

We first show the crack detection in 2D slices for the 
tested samples. The different microstructure configurations 
and chemical compositions lead to differences in crack 

morphology and distribution, ranging from sparse and scat-
tered small cracks in our sea urchin spines, to dense and 
distributed cracks in the emu eggshells. The material differ-
ences also produce different artifacts and noises in the CT 
reconstruction. Our approach succeeds in detecting cracks 
for both materials, as shown in Figs. 5 and 6.

Figure 5 shows the pipeline of crack detection for one 2D 
slice in the testing dataset in our sea urchin spine sample. 

Fig. 4  Microstructure of emu eggshell and representative in  situ 
compression test results. a A reconstruction slice of the original emu 
eggshell structure, indicating the presence of microscopic pores and 
pore canals. The location of this region is shown in c. b, d Projection 

images of an emu eggshell specimen before and during a compres-
sion test, and (c, e) corresponding horizontal reconstruction slices. 
The yellow dashed lines in b and d indicate the locations of the 
reconstruction slices in c and e 

Fig. 5  2D crack detection for sea urchin spine. a Crack detection 
from expert human readers with cross-validations, considered as the 
ground truth. b High-risk potential crack detection results from fea-
ture filtering in Step II, which identified all 14 cracks among many 
other candidates. c Crack detection results by the CNN classifier in 
Step III alone, with significant false detections, d Crack detection 

results by refining filtering results with the CNN classifier, showing 
improved accuracy and e Crack detection results by refining filtering 
results with the CNN classifier and 3D correlation in step III, achiev-
ing a high degree of accuracy with one missed detection (green box), 
and one false detection (yellow box) out of 14 cracks
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Ground truth based on manual labeling is shown in Fig. 5a. 
We first use the feature map filtering in Step II to list the 
high-risk targets. These potential crack locations are shown 
in Fig. 5b with large quantities of false-positive (incorrectly 
classified cracks), as expected. Most of the false-positive 
cracks are misclassified background reconstruction arti-
facts: in particular, the streak effect from CT reconstruc-
tion. There are also falsely identified cracks at the boundary 
of the cellular structures. These proposed crack candidates 
are then refined with the 3D classifier trained in Step III. 
Three results of Step III are shown for comparison. Figure 5c 
shows the detection results solely based on the CNN classi-
fier without the initial filtering in Step II. The performance 
is significantly improved as shown in Fig. 5d by integrating 
Step II with a 2D CNN classifier trained without adjacent 
patches. Finally, the integration of filtering with the 3D clas-
sifier yields the best results shown in Fig. 5e, showing a high 
degree of correlation with the ground truth. The accuracy is 
evaluated by the F1 score, defined as an average of precision 
and recall. The definitions of the precision and recall are

and the F1 score is expressed as

P =
True positive

True positive + False positive

R =
True positive

True positive + False negative

The accuracy of the result is indicated by a high F1 
score, which is based on both good precision and good 
recall. For example, the initial filtering in Step II achieved 
R = 1 by finding all cracks, but resulted in a low P value 
of 0.0700 due to the many false-positives, leading to a 
low F1 score of 0.1308. The performance scores of results 
in Fig. 5 are given in Table 1. The F1 score of our final 
results in Fig. 5e is 0.9286, based on one false-positive 
(highlighted in the yellow box) and one false-negative 
(highlighted in the green box) out of 14 cracks. This crack 
detection results on one slice took 5 s to generate on a 
GPU-based laptop computer. As a comparison, it took 
around 15 min for the human image readers to generate the 
ground truth in Fig. 5a. The results show that the hybrid 
approach provides good performance while minimizing 
computational time and memory expense. The 2D feature 
library provides fast filtering in the complex background 
structure and noisy reconstruction, which selects and 
specifies just a few high-risk locations for the CNN clas-
sifier to process. At the same time, the threshold of the 
filtering is selected to ensure the inclusion of all cracks. 
The initial filtering also reduces the diversity of the input 
image patches, which is expected to contribute to the suc-
cess of the CNN classifier with a relatively small number 
of layers.

The methodology was further tested with another bio-
logical ceramic material: emu eggshells. As shown in 
Fig. 6, the resultant crack patterns are successfully cap-
tured by our method, despite the significant structural 
difference between sea urchin spines and emu eggshells. 
Cracks of different sizes and shapes are identified against 

F1 =
2PR

P + R
.

Fig. 6  2D and 3D crack detection for emu eggshell. a Input 2D slice of the original CT reconstruction b Highlighted 2D crack detection. c Input 
3D volume of the original CT reconstruction. d Detected 3D cracks in this volume

Table 1  Quantitative metrics of the proposed workflow

Metrics\
method

Step II CNN clas-
sifier

Step 
II + CNN 
classifier

Step II + CNN 
classifier + 3D 
correlation

F1 0.1308 0.5000 0.6667 0.9286
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the reconstruction artifacts and noises. Figure 6d shows 
the 3D crack detection results by stacking 2D crack maps.

Figure 7 shows the 3D visualization of cracks detected 
from Step III for the sea urchin spine sample in the 3D 
volumetric dataset. Scattered cracks are observed through-
out the volume. We observe a major crack concentration 
band where nearby cracks are roughly aligned. This result 
is compared with human labeling shown in Fig. 7c, which 
took around 3 h to generate for this volume. A high cor-
relation is observed between the automatic detection and 
human reading.

3D Crack Analysis Results

To further characterize the cracks in the sea urchin spines, 
we register the cracks as 3D objects and represent the 3D 

morphology and orientation information quantitatively for 
mechanical analysis. Figure 8a shows the registered 3D 
cracks in the sea urchin spines. The crack notch patterns 
on each 2D slice are compiled into connected 3D objects, 
which are registered as tilted 3D planes characterized by 
orientation, crack opening width, and surface area. The 
crack orientation is characterized by two angles, the mis-
orientation angle, � and the in-plane rotation angle, � , 
illustrated in the top right corner of Fig. 8. � is defined 
as the angle between the normal direction of each crack 
plane and a reference global direction. For calculation of 
the in-plane rotation angle � , the normal direction is first 
projected to the plane perpendicular to the defined global 
direction. � is then defined as the angle between the pro-
jection direction and another selected in-plane reference 
direction. The misortinetation angle, � , ranges from 0◦–90◦ 

Fig. 7  3D crack visualization in sea urchin spines. a The original 3D μ-CT reconstruction volumetric data, (b) with detected 3D cracks, which is 
compared with (c) the human labeling results. d Here the cracks are shown as embedded in the cellular structure

Fig. 8  3D crack registration results in sea urchin spine. Regis-
tered different crack components are labeled with different colors. 
The zoomed-in figure shows the 3D registration of one titled crack 
plane with registered crack opening width t = 4.49μm , surface 
area s = 540.76μm2 , and cracking plane orientation � = 80.67◦ , 

� = 23.74◦ , where tilt angle � is the angle between the normal direc-
tion of the crack plane and the z-axis, the in-plane angle � is the angle 
between the projected plane normal direction on the xy plane and the 
x-axis
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and the in-plane rotation angle, � , ranges from 0◦–360◦ . 
The crack opening width t  is calculated by doubling the 
average distance of all surface points to the fitted crack 
planes. The surface area s is then calculated by summing 
up the triangular mesh area based on the surface mesh data 
for each individual crack. Figure 8 shows one registered 
crack with the registered crack opening width t = 4.49 μm , 
surface area s = 540.76 μm2 , and cracking plane orienta-
tion � = 80.67◦ , � = 23.74◦ . The blue arrow shows the 
normal direction of fitted planes.

This 3D crack characterization enables a statisti-
cal analysis for all the cracks. The results are displayed 
in Fig.  9a–c, where orientation of the crack planes, 
crack opening width and surface area are displayed in 
histograms.

The result proves that our algorithm can extract and sepa-
rate the 3D pattern of the damage cracks from the hosting 
environment and reconstruction artifacts. The framework 
introduces myriad opportunities for 3D damage characteri-
zation and is broadly applicable to other types of abnormal-
ity detection in complicated structured material systems.

Conclusion

In this paper, we demonstrate a 3D crack characterization 
method that can be applied to various cellular material sys-
tems. This feature-map-based method utilizes a large collec-
tion of crack features to rapidly eliminate the background of 
hosting structures or reconstruction artifacts. A refinement 
based on supervised machine learning further improves the 
detection accuracy from the training data. In addition, the 
method allows for the registering of 3D information for each 
individual crack, including the location, area, orientation, 
and crack opening width. Such information can be integrated 

with the original cellular network structural, providing valu-
able insights about the structural-property relationship of 
cellular materials from the individual branch to the full net-
work level. Compared to human labeling, this 3D computer 
vision approach is both significantly faster and more sensi-
tive, providing robust quantitative 3D characterization of 
cracks on various material systems subject to noise and CT 
reconstruction artifacts.
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