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Innovations in nest design are thought to be one potential factor in the
evolutionary success of passerine birds (order: Passeriformes), which
colonized new ecological niches as they diversified in the Oligocene and Mio-
cene. In particular, tyrant flycatchers and their allies (parvorder: Tyrannida)
are an extremely diverse group of NewWorld suboscine passerines occupying
a wide range of habitats and exhibiting substantial extant variation in nest
design. To explore the evolution of nest architecture in this clade, we first
described nest traits across the Tyrannida phylogeny and estimated ancestral
nest conditions. We then quantified macroevolutionary transition rates
between nest types, examined a potential coevolutionary relationship between
nest type and habitat, and used phylogenetic mixed models to determine
possible ecological and environmental correlates of nest design. The Tyran-
nida ancestor probably built a cup nest in a closed habitat, and dome nests
independently evolved at least 15 times within this group. Both cup- and
dome-nesting species diversified into semi-open and open habitats, and we
did not detect a coevolutionary relationship between nest type and habitat.
Furthermore, nest type was not significantly correlated with several key eco-
logical, life-history and environmental traits, suggesting that broad variation
in Tyrannida nest architecture may not easily be explained by a single factor.

This article is part of the theme issue ‘The evolutionary ecology of nests:
a cross-taxon approach’.
1. Introduction
Passeriformes (passerines, or ‘perching birds’) is the largest order of birds,
comprising approximately 60% of extant avian species and occupying a wide
range of ecological niches worldwide. This clade’s ecological and evolutionary
success has been attributed to many potential factors [1–3], including inno-
vation in nest-building behaviours [4–10]. A well-built nest represents a key
component of successful reproduction in many avian species, protecting eggs
and chicks from predation and environmental pressures [11–14]. Unlike non-
passerine lineages, which exhibit strong evolutionary conservatism in nest
design [4,15], some passerine species have explored and occupied many differ-
ent nest-building micro-niches (e.g. [9,16–18]), and traits related to nest
construction seem to be highly labile within multiple subclades of this radiation
[11,15,16,19,20].

Modern passerines appear to have evolved from cavity-nesting ancestors
[21,22]. Cavity nesting can require substantial morphological or ecological
specialization [23,24] and thus might limit a species’ ecological tolerance, cur-
tailing its ability to expand its range or to persist through environmental
changes in habitat conditions [25,26]. To overcome these challenges, early
modern passerines probably constructed dome nests outside of cavities
[27,28], with several lineages subsequently acquiring the ability to reproduce
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in cup-shaped nests [9]. Dome nests (i.e. nests constructed
with roofs) are thought to provide substantial protection
from the environment and predators [16,29,30], but they
also restrict breeding opportunities and potentially limit a
species’ ecological niche [12,30]. Open cup nests, on the
other hand, are considered easier to build than dome nests
[23] and thus potentially facilitate the colonization of new
niches [9]. The general drivers of variation in nest structure
(i.e. cup versus dome), however, are relatively unknown,
and evidence for widespread macroevolutionary conse-
quences of innovations in nesting strategy is mixed [7,31].

The suboscine passerines—and particularly the parvorder
Tyrannida—provide a robust system in which to examine
the evolutionary causes and consequences of innovations in
nest architecture. The Tyrannida [32,33] are small Neotropical
insectivores. They are found in a variety of different habitats
and exhibit a range of breeding strategies, from polygyny
and primarily female parental care to monogamy and shared
biparental care [34]. The Tyrannida clade includes the most
diverse avian family, the tyrant flycatchers (Tyrannidae) [31],
as well as the manakins (Pipridae), cotingas (Cotingidae),
royal flycatchers (Onychorhynchidae), tityras (Tityridae) and
the sharpbill (Oxyruncus cristatus; family Oxyruncidae)
(figure 1). Early Tyrannida birds inhabited interior forests in
the Oligocene (ca 30 Ma), followed by subsequent divergence
events in forest habitats and an explosive radiation that corre-
lates in time with expansion into semi-open and open habitats
in the mid-Miocene (ca 15 Ma), particularly in the tityras
(Tityridae) and several lineages of the tyrant flycatchers (Tyr-
annidae) [35]. In addition to having unusually high inter-
lineage variation in diversification rates [35–37], Tyrannida
also contains many cup- and dome nesters, with closely
related species sometimes exhibiting considerable nest type
variation [34]. Thus, Tyrannida is a compelling group in
which to perform a comparative analysis of nest type evol-
ution: the substantial nest diversity within this group can be
studied at a focused taxonomic scale, without the need to con-
trol for ecological factors that may vary widely across a
broader taxonomic sample [38,39].

One of the main potential drivers of macroevolutionary
shifts in avian nest architecture is nesting habitat (e.g.
[4,5,22,39]). For example, birds nesting in open habitats are
more exposed to environmental conditions such as solar radi-
ation, wind and rain. On the other hand, birds nesting in
closed habitats (i.e. dense forested vegetation) may be more
protected from the elements; in addition, they have access
to a greater range of nest locations and may be less exposed
to predators compared to species nesting in open habitats or
on the ground [26,40,41]. The influence of habitat on nest
architecture, however, has rarely been tested at broader
phylogenetic scales (for example, a parvorder); the effects
of climate (e.g. [6,41]) or urbanization (e.g. [7]) are more
commonly considered. With respect to climate, one study
of Australian passerines [42] determined that dome nesting
is more common in hot, dry regions with limited plant
canopy cover. Beyond habitat, though, a number of additio-
nal ecological and life-history factors could influence nest
design. These include other aspects of nest architecture
(such as nest height and location) and a suite of ecological
and life-history traits, including clutch size, adult body
mass, flight behaviour, beak morphology and territorial be-
haviour (summarized in table 1). In addition, ecological
interactions (like predation) and environmental factors
(such as elevation, latitude, temperature, precipitation and
range size; table 1) could affect nest architecture directly
[6,10,63] if, for example, nest predation decreased with
elevation [64] or if birds build dome nests to escape extreme
cold [65] or heat [29]. In turn, a species’ nest type might
reflect its ability to tolerate or disperse in a wide range of
environmental conditions [6]: cavity nesters may be more
constrained since they may be more limited by nest-site avail-
ability [66], for example, than cup- or dome-nesting species
[67]. An examination of the evolutionary link between habitat
and nest type would therefore need to account for these co-
varying ecological traits; it should also incorporate alternate
measures of niche differentiation such as temperature and
elevation that go beyond habitat type (see table 1 for a
compiled summary of specific hypotheses and predictions).

Here, we investigate the evolution of nest architecture and
habitat in Tyrannida by first surveying nest structure and
location across 466 species, a sample that represents 75% of
currently described species and 95% of currently described
genera. We then use Bayesian phylogenetic methods to esti-
mate the ancestral nesting state of this clade, to quantify
transition rates between nest architecture strategies, and to
assess possible coevolutionary dynamics between nest archi-
tecture and habitat type. Finally, we use phylogenetic mixed
models to determine whether nest type is correlated with
diverse ecological, life-history and environmental traits.
2. Methods
(a) Study system and data collection
(i) Study system
We studied a monophyletic lineage comprising tyrant flycatchers
and allies in the suboscine parvorder Tyrannida [32,33]. We fol-
lowed the Handbook of the Birds of the World and BirdLife
International [68] for taxonomic descriptions and used Jetz
et al. [69] for phylogenetic data. Tyrannida includes species that
have been recently categorized into six families [70,71]: Pipridae,
Cotingidae, Onychorhynchidae, Tityridae, Oxyruncidae and Tyr-
annidae, the last of which is the most speciose family of birds in
the world [34]. Breeding strategies are mixed in Tyrannida: poly-
gyny and primarily female parental care are very common in
some families (Pipridae, Cotingidae), while monogamy and
shared biparental care are typical in others (Onychorhynchidae,
Tityridae, Oxyruncidae and Tyrannidae). Correspondingly,
males and females may vary in their contributions to nest
building, though there is a substantial lack of knowledge of
nest-building behaviours for most of the species in the clade [34].

(ii) Nest design
We searched for nest architecture and nest location information
for each species of Tyrannida. We principally used the website
HBW Alive [72], supplemented with primary literature on nest
descriptions to build our dataset S1 (electronic supplementary
material, S2). After a detailed literature search, we were able to
compile nest descriptions for 466 species (approx. 75%), encom-
passing 95% of the genera in this clade (table 2). We assigned
each species in this dataset to one of two basic nest types: cup
(i.e. cup-shaped nests that are rounded, with a central depression
and no roof, n = 339 species) or dome (i.e. enclosed, constructed
nests with a roof, n = 127 species). We then scored nest location as
branch, hanging, ground, banks or rocks (i.e. fully supported off
of the ground) or cavity, following the nest descriptions of neo-
tropical birds given by Simon & Pacheco [73]. We categorized
the nests of genus Tityra as cups in cavities since the dried



(a) (c)

(d )

(b)

(e) ( f )

Figure 1. Bird species representing the different families in the parvorder Tyrannida. (a) Manakins–Pipridae (blue-capped manakin–Lepidothrix coronata),
(b) cotingas–Cotingidae (purple-throated fruitcrow–Querula purpurata), (c) royal flycatchers–Onychorhynchidae (royal flycatcher–Onychorhynchus coronatus),
(d ) tityras–Tityridae (cinnamon becard–Pachyramphus cinnamomeus), (e) sharpbill–Oxyruncidae (sharpbill–Oxyruncus cristatus), and ( f ) tyrant flycatchers–Tyran-
nidae (rusty-margined flycatcher–Myiozetetes cayanensis). Photo credits: (a-d,f ) Daniel Field, (e) Aisse Gaertner.
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leaves from which the nest is constructed more closely resemble a
cup-like open structure. We also recorded the average nest height
from the ground, either as the single value reported in the nest
descriptions, or, when several values were available, as the
mid-height between the lowest and highest nest heights reported
for the species, which might correlate with antipredator strategy
in different habitats [4,16,41,74–76].

(iii) Habitat categorization
For each species in the dataset, we followed Tobias et al. [51] in
assigning one of three habitat types: closed (dense habitats in
forest), semi-open (forest edges, dense understory, thickets or
shrubland), or open (deserts, grassland, low shrubs, rocky
habitats, seashores and cities).

(iv) Ecological, life-history and environmental factors associated
with nest types

Based on a literature search, we identified ecological, life-history
and environmental traits that might correlate with nest type vari-
ation (summarized in table 1). To test for possible correlations
between nest type (cup or dome) and these traits in Tyrannida,
we compiled data on the following for each species in the data-
set: nest location (see above), nest height (see above), nest
habitat (see above), clutch size [72]; adult body mass and
hand-wing index [77]; beak dimensions [78]; territoriality [77];
elevation [72]; latitude, temperature, and precipitation [77]; and
range size [78]. For elevation, we recorded the average eleva-
tional distribution of the species, as reported in HBW Alive
[72], which incorporates information from local field guides.
For latitude, we recorded the centroid latitude, which is the geo-
metric centre of the species range (restricted to breeding and
resident range) as described by Tobias et al. [78]. For temperature
and precipitation, we recorded, for each species’ breeding range,
the average and annual variation in temperature and precipi-
tation using the WorldClim v.1 database at 10min resolution
for 1970–2000 [79], as reported in Sheard et al. [77].

(b) Phylogenetic comparative methods
We downloaded a 1000-tree subset of Tyrannida topologies from
birdtree.org [69], based on the Hackett et al. [80] backbone. We
then used TREEANNOTATOR [81] to obtain a maximum clade-
credibility tree, forming the species-level phylogeny for our
comparative analyses.

(i) Nest type evolution and phylogenetic signal
We explored the evolutionary shifts between cup and dome nest
types in Tyrannida using the ‘Multistate’ module in the program
BAYESTRAITS [82]. As a first step, a maximum-likelihood esti-
mation was run on the binary nest type dataset to obtain
approximate transition rate values between cups and domes,
according to which we picked prior settings for our Markov
chain Monte Carlo (MCMC) run. We then employed an exponen-
tial prior with a mean of 10 and ran a chain of 1 010 000 iterations
with an initial burn-in of 10 000 runs, and a sampling period of
1000, for a total of 1000 generations. To visualize the ancestral
state reconstructions of binary nest type (cup or dome) as well
as nest type and location (based on seven combinations: cup/
branch, cup/banks or rocks, cup/cavity, cup/ground, dome/
branch, dome/ground, dome/hanging), we also performed
100 rounds of stochastic character mapping using the function
make.simmap [83] on an all-rates-different model (electronic sup-
plementary material, table S2) in the R package phytools 1.2-0
[84], which uses MCMC simulations. We used iTOL v. 6.7.4
[85] to visualize habitat. We calculated the phylogenetic signal
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Table 2. Taxonomic distribution of nest type and location. (For each family, we note in bold the number of species and genera included in this study, and the
number in parentheses indicates the total number of species or genera recognized by the Handbook of the Birds of the World and BirdLife International (2022).)

family species genera

nest type

branch hanging

location

cup dome cavity bank/rock ground

Pipridae 42 (53) 16 (17) 42 0 42 0 0 0 0

Cotingidae 48 (67) 23 (24) 48 0 44 0 0 4 0

Tityridae 26 (39) 6 (7) 10 16 9 14 3 0 0

Oxyruncidae 1 (1) 1 (1) 1 0 1 0 0 0 0

Onychorhynchidae 8 (9) 3 (3) 0 8 0 8 0 0 0

Tyrannidae 341 (450) 98 (102) 237 103 188 64 38 18 23

all 466 (619) 147 (154) 339 127 283 86 41 22 23
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in the presence of a cup or dome nest by using the Fritz & Purvis
[86] D estimator for binary traits, applying the function ‘phylo.d’
from the R package caper [87]. We ran 1000 simulations to test
whether observed values of D were significantly different from
those obtained if we assume no phylogenetic structure to
the data (D = 1) or if evolution of this trait is consistent with
Brownian motion (D = 0).
(ii) Habitat
To quantify the macroevolutionary patterns associated with
the three habitat variables (habitat density: closed = 1, semi-
open = 2, open = 3), we again ran a BAYESTRAITS ‘Multistate’
model. Model parameters were set to 1 010 000 iterations, with
an initial burn-in of 10 000 iterations and a sampling period of
1000, for a total of 1000 iterations, and priors for the transition
rates were set to an exponential distribution with a mean of 10.
(iii) Evaluating coevolution of nest architecture and habitat type
To investigate a possible coevolutionary association between nest
architecture and nesting habitat, we employed the ‘Discrete’ pro-
gram with MCMC [88] as implemented in BAYESTRAITS. Since the
Discrete module only allows traits with binary states to be mod-
elled, we binarized our habitat classification under the following
three habitat schemes: (i) closed habitats versus semi-open and
open habitats; (ii) closed and semi-open habitats versus open
habitats; and (iiii) closed habitats versus open habitats, for
which all species in the semi-open habitat class were reassigned
to ‘closed’ or ‘open’ based on key terms in the habitat description
(i.e. closed = forest, second-growth forest, woodland, dense veg-
etation; open = light woodland, borders, scattered trees, shady
plantations, cultivated areas, pastures) and on discussions with
experienced field biologist colleagues. We compared continu-
ous-time Markov models of dependent and independent
evolution for nest type against each binarized habitat dataset to
explore if nest architecture and habitat are likely to have evolved
in association with one another. We set the rate parameter priors
as an exponential distribution with a mean of 10 and ran MCMC
chains for 200 million iterations, sampling every 200 000th gener-
ation, and with a burn-in period of 20 million generations. We
used the MCMC Trace Analysis tool (TRACER) v1.6 [89] to
review effective sample size (ESS) estimates for posterior
probability distributions; all analyses reported ESS > 400. To
compute marginal likelihood values, we employed a stepping-
stone sampler in MCMC [90], which used 200 stones and ran
each stone for 200 000 iterations. We then used these likelihood
scores to calculate Bayes factors for our model comparisons.
(iv) Testing for potential correlates of nest type
Finally, to evaluate potential ecological, life-history and environ-
mental correlates of nest type (cup or dome), we conducted
phylogenetic logistic regressions using the package phylolm [91]
in R version 4.0.2. Phylogenetic residuals were modelled under
Brownian motion, and the searching space bound was set at 20.
To improve interpretability of the model output, all continuous
predictor variables were rescaled to have a mean of 0 and a var-
iance of 1 prior to analysis; in addition, clutch size, body mass,
and range size were transformed by the natural log, elevation
and nest height were square-root transformed, and latitude was
considered in absolute value (i.e. distance from equator). Multicol-
linearity was evaluated using the variance inflation factor (VIF);
all VIF values for models without habitat or with habitat as a
binary were below 5, and all VIF values were below 8.

We ran three types ofmodels. First, we assessed the relationship
betweennest type (cup- versusdome-nesting) andpotential ecologi-
cal and life-history correlates (i.e. drivers) of shifts between these
traits: nest habitat, nest height, clutch size, adult body mass, flight
ability (hand-wing index (HWI)), beak dimensions and territory
defence behaviour (summarized in table 1). We consider these eco-
logical and life-history traits to be potential drivers of nest type
variation because they might directly (or indirectly) influence
aspects of nest site location, nest construction or nest design. As
with the coevolutionary models (see above), we evaluated all
three possible classifications of the habitat variables (closed versus
semi-open and open; closed and semi-open versus open; closed
versus open). We also used a version of the model with habitat as
a ternary variable (closed versus semi-open versus open).

Second, we modelled correlations between nest type and a
suite of environmental traits (i.e. more precise measurements of
habitat, as well as proxies for niche occupancy), including
elevation, latitude, range size, average range temperature, aver-
age range precipitation, and average breeding range variability
in temperature and precipitation (both measures of seasonality).
We included adult body mass in this model to control for
effects body size (and associated life-history traits, like nest
size) might have on how a species responds to environmental
factors with respect to nest building [18]. Environmental
and life-history traits are summarized in table 1. Overall, we
consider environmental traits—like a species’ elevation or
range size—to be potential consequences of nest type variation
because of the purported link between shifts in nest architecture
and the colonization of new habitats and ecological niches.

Third, as a check against the potential statistical bias of the
small number of macroevolutionary transitions within our data-
set, we ran separate models including nest type and each of the
unique fixed effects listed above and summarized in table 1.



(a) (c) (d )(b)

(e) ( f ) (g) (h)

cup

branch

branch
ground
hanging

cavity
ground

nest type/location

bank/rock

dome

Tyrannidae (tyrant
flycatchers)

closed

open

semi-open

Pipridae

Tityridae (tityras and allies)Oxyruncidae (sharpbill)

(manakins)

(cotingas)

(royal flycatchers
and allies)

Cotingidae

Onychorhynchidae

habitat

A

D

E

F

I

G

C

B

H

Figure 2. Phylogenetic distribution of nest architecture and location, based on 100 rounds of stochastic character mapping. The external circle represents the habitat
type (closed, semi-open, open) across the Tyrannida. Nest type–location ancestral state estimations are depicted on the phylogeny. Examples of nest architecture
diversity, in terms of nest type and location, are depicted in the photographs and shown on the phylogeny. (a) Cup–branch (white-bearded manakin–Manacus
manacus); (b) cup–banks or rocks (Andean cock-of-the-rock–Rupicola peruvianus); (c) dome–hanging (Atlantic royal flycatcher–Onychorhynchus swainsoni); (d )
cup–cavity (masked tityra–Tityra semifasciata); (e) dome-ground (ringed antpipit–Corythopis torquatus); ( f ) dome–branch (great kiskadee–Pitangus sulphuratus);
(g) cup–ground (spot-billed ground-tyrant–Muscisaxicola maculirostris); and (h) transition from dome–hanging to cup–bank (shown in the photo is the cup-build-
ing cinnamon flycatcher–Pyrrhomyias cinnamomeus). (i) A red line highlights members of the chat-tyrant genus Ochthoeca, which includes species that build cup
and dome nests. Photo credits: (a,b,g,h) David Ocampo, (c) Daniel Perrella, (d ) John and Milena Beer, (e) Gustavo Londoño, ( f ) Juan Felipe León.
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3. Results
(a) Taxonomic and phylogenetic distribution of nest

traits
Among the studied species (n = 466), the cup is the most
common nest type (73%; figure 2; table 2), present in all
species in the Pipridae (manakins), Cotingidae (cotingas),
and Oxyruncidae, most species (70%) in the Tyrannidae
(tyrant flycatchers), and some species (38%) in the Tityridae.
All species in the Onychorhynchidae build dome nests.
Across Tyrannida, most nests are found on branches (61%),
though some cotingas nest on banks or rocks, some tityrids
nest in cavities or in hanging structures, and tyranids nest
in a variety of locations, including in cups and domes on
the ground (figure 2; table 2).

The ancestral Tyrannida species probably built a cup nest
(ρ > 0.999; electronic supplementary material, table S1), in
agreement with the ancestral state reconstruction estimates



Table 3. The macroevolutionary transition rates among nest architectural
states imply that domes were more likely to evolve from cups, while the
reverse was rare. (These values indicate instantaneous transition rates
between states and can be interpreted as the relative probability of moving
from one state to another. Out of the calculated posterior distribution of
1000 estimated rate values, shown here are the median value, the 2.5th
percentile value, and the 97.5th percentile value.)

transition rates

median

2.5th 97.5th

from to percentile percentile

cup dome 0.0049 0.0029 0.0075

dome cup 0.0007 0.0000 0.0028

closed

open
semi-open

habitat

q = 0.063

q = 0.020

q = 0.004 q = 0.001

q = 0.017

q = 0.053

Figure 3. Macroevolutionary transitions among habitat states. The value q
represents the instantaneous transition rate between states and can be inter-
preted as the relative probability of moving from one state to another; thin
arrows indicate smaller q rates (less likely transitions) and thick, black arrows
indicate larger q rates (more likely transitions). Median rate values are pre-
sented here. The star next to the ‘closed’ habitat circle indicates that it is the
most probable ancestral state. Original illustrations by Maria Camila León.
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showing that early Tyrannida probably built cup nests
located in branches (figure 2). Our analysis of state transition
rates indicates that dome nests evolved from cup nests several
times across this clade, but that transitions from domes back
to cups were less common (table 3; electronic supplementary
material, figure S1). Consistent with this result, the stochastic
character mapping suggests that the dome nest type indepen-
dently evolved at least 15 times from cups—within the
Tityridae, Onychorhynchidae and Tyrannidae (electronic
supplementary material, figure S2)—along with a single
transition from dome nests to cup nests, in the clade that
includes the cinnamon flycatcher (Pyrrhomyias cinnamomeus)
(figure 2h) and cliff flycatcher (Hirundinea ferruginea)
(electronic supplementary material, table S2).

We found support for a strong phylogenetic signal (Fritz
& Purvis’s D, maximum clade credibility tree: D =−0.835,
p(D=1) < 0.001, p(D=0) > 0.999) in nest type, indicating that
nest type is more phylogenetically conserved than the Brow-
nian expectation. Nest type is especially highly conserved in
manakins (Pipridae) and cotingas (Cotingidae), which build
cup nests that are typically placed on branches (figure 2a)
in closed and semi-open habitats. However, in cotingas,
there are two independent origins of nests located in banks
or rocks: in the clade comprising the Guianan red-cotinga
(Phoenicircus carnifex) and the cock–of–the–rocks (Rupicola
rupicola and Rupicola peruvianus; figure 2b), and in the
purple-throated cotinga (Porphyrolaema porphyrolaema). All
of the species in the Onychorhynchidae family build dome
nests hanging from branches in closed habitats (figure 2c).
In Tityridae, species in the genus Tityra place their nests in
cavities (figure 2d ), while dome nests hanging from branches
are present in the becards (genus Pachyramphus), with several
species distributed in semi-open habitats. The sharpbill, the
single species in the family Oxyruncidae, builds a cup nest
placed in branches in closed habitats [92].

The family Tyrannidae contains the most species (73% of
species in Tyrannida) and exhibits the greatest nest diversity
(figure 2). Ground-nesting species with dome nests are rare:
the only examples are two antpipit species (genus: Corythopis;
figure 2e), which are embedded in a clade that typically
builds hanging dome nests in closed and semi-open habitats.
This clade of hanging dome nesters includes the pygmy tyr-
ants (e.g. genera: Lophotriccus, Hemitriccus), tody-flycatchers
(e.g. genus: Todirostrum), and flatbills (e.g. genera: Rhynchocy-
clus, Tolmomyias). Most of the other transitions from cups to
domes occurred in species that build nests on branches (e.g.
genera: Pitangus and Myiozetetes; figure 2f ). Ground-nesting
cup-builders such as ground-tyrants (genus: Muscisaxicola)
are found primarily in open habitats like deserts, grassland,
low shrubs and rocky habitats (figure 2g). The tyrant fly-
catcher family also contains the one estimated transition
from domes to cups, in the clade that contains the cinnamon
flycatcher (figure 2h) and cliff flycatcher; this group is sister to
the clade including the dome-nesting orange-banded fly-
catcher (Myiophobus lintoni), ochraceous-breasted flycatcher
(Myiophobus ochraceiventris), and ornate flycatcher (Myiotric-
cus ornatus). In the Tityridae and Tyrannidae, there are 41
species from 11 genera that build cup nests inside cavities,
mostly in closed habitats (table 2).

(b) No evidence of coevolution between habitat and
nest architecture

An analysis of the macroevolutionary transitions between
habitat types yielded no qualitative difference in transition
rates between either semi-open and open habitats or semi-
open and closed habitats. For this reason, there is no strong
rationale for species nesting in semi-open habits to be reas-
signed to open or closed habitat types, which might be the
case if, for example, transitions between semi-open and open
habitats were much more common than transitions between
semi-open and closed habitats (figure 3). Instead, transitions
from open to semi-open habitats, as well as from semi-open
to closed habitats, were relatively common (q = 0.053 [0.023,
0.099] and q = 0.063 [0.043,0.093], respectively, with values
representing the distribution median [2.5% percentile, 97.5%
percentile]). However, transitions directly between open and
closed habitats were much rarer (q = 0.001 [0.000,0.003] for
closed to open and q = 0.004 [0.000,0.020] from open to
closed), again underscoring the importance of semi-open habi-
tat as a distinct, biologically meaningful category (electronic
supplementary material, table S3).
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Figure 4. Distribution of cup and dome nests among different habitat types.
Original illustrations by Maria Camila León.
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Within thismacroevolutionary transition analysis (figure 3),
the predicted Tyrannida ancestral habitat was probably closed
(median probability 0.658) or potentially semi-open (median
probability 0.284), but it was unlikely to have been open
(median probability 0.009).

Despite an apparent association between habitat and nest
type (figure 4)—i.e. domes are proportionally more common
in closed than semi-open or open habitats—we found no evi-
dence of coevolution between shifts in nest shape and habitat
transitions (electronic supplementary material, table S4). This
lack of coevolution holds under different reclassifications of
semi-open habitats (electronic supplementary material, table S4).

(c) Ecological, life-history and environmental correlates
of nest type variation

Interspecific variation in nest type within the Tyrannida is
apparently unrelated to habitat type, nest height, clutch
size, adult body mass, flight ability (HWI), beak dimensions
or territoriality, either considered within a single model
(electronic supplementary material, tables S5, figure S3) or
tested individually (electronic supplementary material,
tables S6–S8). Cup and dome nest types are also unrelated
to any of the environmental traits assessed here (average
range elevation and latitude, average temperature and
precipitation, temperature seasonality, precipitation seasonal-
ity or range size), both within a single model (electronic
supplementary material, table S9, figure S4) or tested
individually (electronic supplementary material, table S10).
4. Discussion
As the group containing the most speciose family of birds, the
tyrant flycatchers and allies offer a compelling clade in which
to examine the evolution of nest architecture in passerine
birds. Tyrannida species show substantial variation in nest
type and nest location (figure 2), with cup and dome
nests—in a variety of configurations on the ground, in cav-
ities, on rocks or banks, on branches or hanging—evolving
across the phylogenetic tree. Overall, we detected a strong
phylogenetic signal in nest type (cup versus dome)
(figure 2), suggesting that shifts in nest type are relatively
rare, particularly in the cotingas and manakins. The ancestral
Tyrannida species probably built a cup nest and lived in
forested (i.e. closed) habitat. Across the Tyrannida clade,
dome nesting evolved from cup nesting at least 15 times.
This is a larger number of nest type shifts than those found
in other suboscine passerine lineages, such as the furnariids
[5] and antbirds [93], and comparable to the number of
shifts in the 71-family Passerida lineage [9]. Within the Tyran-
nida, we reconstructed only a single reversal from dome
nesting back to cup nesting: the cinnamon flycatcher and
cliff flycatcher build cup nests, unlike their closest dome-nest-
ing relatives, the orange-banded flycatcher (Myiophobus
lintoni), ochraceous-breasted flycatcher (Myiophobus ochracei-
ventris) and ornate flycatcher (Myiotriccus ornatus). Several
Tyrannida lineages ultimately colonized open habitats by
initially occupying semi-open habitats (figure 3). Dome
nests are often found in closed habitats and seldom in open
habitats (figure 4), but this relationship was not statistically
significant (electronic supplementary material, table S4): we
did not find evidence for coevolution of nest type and habitat.
Moreover, we did not detect an association between nest type
and any of the ecological, life-history and environmental
traits hypothesized to impact nest architecture. Therefore,
contrary to our expectations, we found no evidence that
shifts in nest type allowed Tyrannida species to colonize
new habitats or otherwise expand their ecological niches.

We found no support for coevolution between nest type
and habitat in Tyrannida. Why might this be? Even though
dome nesters are more common in closed and (to a lesser
degree) semi-open habitats than they are in open habitats
across the parvorder, cup- and dome-nesting species are
found in all three habitat types in the Tyrannidae family
[34,35,94–96]. However, within this family, there are relatively
few independent shifts between cup- and dome-nesting
species, reducing the statistical ability to detect coevolution
if it exists. Moreover, in the next two largest families—Cotin-
gidae and Pipridae—all species are cup nesters in closed or
semi-open habitats [34]. Thus, one potential explanation for
a lack of coevolution between nest type and habitat is
that—despite the variation in nest architecture found within
this clade—nest type generally shows strong phylogenetic
inertia in Tyrannida. It is thus difficult to determine if,
when shifts do occur (typically from cup to dome), they are
accompanied by a predictable, corresponding shift in habitat
type. Another possibility is that our nest and habitat categor-
izations were too coarse. For example, with respect to nest
type, the lighter cup of a white-bearded manakin (Manacus
manacus; figure 2a) differs markedly from the more robust
cup of a cinnamon flycatcher (figure 2h), despite the birds
having similar body masses. Assessing a trait related to
nest size [10]—such as nest volume, which tends to be greater
in colder climates [18]—may thus be more ecologically and
evolutionarily relevant within this context.

We also did not detect a significant relationship between
nest type and a suite of ecological, life-history and environ-
mental traits. One possibility is that our analysis overlooked
potential important correlates, such as parental care [97],
which we excluded because there is no information available
for most of the species. For example, in a recent study of nest
architecture in more than 3000 passerine species, shifts to cup
nesting were associated with decreased investment (i.e. time)
in nest building and with increased range sizes and broader
thermal niches [7]. Moreover, flight ability and beak dimen-
sions are more likely to be primary drivers of variation in
dispersal ability and diet, respectively [77,98], potentially



royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

378:20220148

10

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

11
 J

ul
y 

20
23

 

eclipsing any secondary effect they might have on nest con-
struction. In fact, the sharpbill has an elongated and refined
beak and builds cups, contrary to our proposed prediction
(table 1). While it is certainly plausible that a more detailed
analysis could reveal new relationships, the most likely con-
clusion is that in Tyrannida, phylogenetic history explains a
great deal of variation in nest type. Furthermore, one conse-
quence of the strong phylogenetic signal in nest type is that
many of our comparative tests also had low statistical power.
Thus, an important caveat is that even though we did not
detect a significant association between nest type and a variety
of relevant ecological, life-history and environmental traits,
these variables may nonetheless be predictive on a larger taxo-
nomic scale. Overall, in Tyrannida, many selective forces
probably tug at the nest phenotype in varied and unpredict-
able ways, with no one single factor—including habitat
(see above paragraph)—consistently affecting nest type at
this taxonomic scale.

The strong phylogenetic signal in nest type, however,
does suggest that nest descriptions can be taxonomically
informative in Tyrannida. In a recent example of this,
within the family Tyrannidae, molecular analysis revealed
non-monophyly within Myiophobus (a typical cup-nesting
genus), and a taxonomic split was proposed, re-assigning
three species to a new genus, Nephelomyias [99], with closer
affinities to another dome-nesting genus, Myiotriccus. This
taxonomic differentiation was later validated when two of
the Nephelomyias species were described as building dome
nests [100,101]. A similar example involves two former
congeners, the dome-nesting great kiskadee (Pitangus sul-
phuratus) and the cup-nesting lesser kiskadee (previously
Pintagus lictor), which were recently placed in separate
genera (as Pitangus sulphuratus and Philohydor lictor, respect-
ively) based on new molecular phylogenetic studies [102].
Outside Tyrannida, several molecular phylogenies have
revealed polyphyly in passerine genera comprising species
with divergent nest types, resulting for example in splits in
Ploceus weaverbirds [103] and Myrmeciza antbirds [104].
In this study, we also uncover examples of monophyletic
Tyrannida lineages whose closely-related species exhibit
shifts in nest type (e.g. figure 2i). For example, the chat-
tyrant genus Ochthoeca, known for typically building cup
nests, included species in a recent radiation that shifted to
building dome nests [105]. Recent proposals have sought
to recognize these dome-nesting species in a separate genus
(Silvicultrix), supported by molecular data [33]. Shifts in
nest type may in fact be a dynamic part of the speciation pro-
cess in some lineages: in Tyrannida, Ochthoeca and Silvicultrix
would be good candidate taxa for further study.

Across passerines, shifts between cups and domes are
common, occurring in parallel in diverse lineages [6,20,93].
We recovered the cup structure as the ancestral nest type
for Tyrannida, consistent with an earlier study focusing on
Australian lineages of passerines, which included representa-
tives from the Tyriannida clade [9]. In a broader taxonomic
context, however, dome nests have been suggested as the
ancestral nest type for the entire passerine clade [9]. There-
fore, the dome nests we observe in 15 lineages within the
families Tityridae and Tyrannidae are perhaps the result of
‘reverse evolution’ in nest type (i.e. these species re-evolved
domes from cups). Furthermore, the single transition that
we recovered from domes to cups in the lineage leading to
the cinnamon flycatcher (figure 2h; electronic supplementary
material, S2) and cliff flycatcher is intriguing; the scarcity
of such shifts makes it statistically difficult to test for
associations between these transitions and external factors.

Our ancestral reconstruction of habitats accords with pre-
vious findings about the ecological radiation (i.e. expansion
of habitat and foraging behaviour) of Tyrannida [35]. Initial
divergences between Cotingidae, Pipridae and Tyrannidae
and allies occurred in closed habitats during the Oligocene.
Then, subsequent radiation events occurred in semi-open
and open habitats, promoting large-scale diversification in
the following Tyrannidae subclades: Elaeniines, Myiarchines,
Tyrannines and Fluvicolines (sensu [34]). Within these subfa-
milies, we observed intriguing patterns in nest architecture
evolution (figure 2). These include: high variation in cup
location and nest heights (Elaeniines), cups located in cavities
(Myiarchines), multiple independent shifts from cups to
domes (Tyrannines, Fluvicolinines), cups fully supported in
banks (Tyrannines), one species—the piratic flycatcher (Lega-
tus leucophaius)—that does not build a nest but instead usurps
the dome or pendent nest of various other species (Tyran-
nines), and novel—in Tyrannida—cup-nesting behaviour on
the ground (Fluvicolinae). Although we did not find support
in Tyrannida for the hypothesis that shifts in nest architecture
explicitly promote expansion into new habitats and ecological
niches, nest-building innovation nevertheless seems likely to
have contributed to the extraordinary species diversity of
other avian families, including Furnariidae [5,20].

Our study suggests that the drivers and consequences of
shifts in nest architecture are not straightforward in the clade
Tyrannida, perhaps owing in part to the low transition rates
between the principal nest architectural types. However, the
nest is a complex phenotype that can be influenced by many
factors at a microevolutionary scale, and it is possible that
the macroevolutionary story might be similarly complex and
nuanced in other avian groups. In the future, obtaining more
detailed information on behavioural and ecological traits
associated with nesting (e.g. competition for nest sites, brood
parasitism, chick developmental period) and finer-scale infor-
mation on environmental conditions at the nest could perhaps
elucidate the mechanisms by which avian species evolve new
nest designs—and sometimes occupy novel ecological niches.
However, there remain vast gaps in our knowledge of the
breeding biology of many bird species [106–108]. In Tyrannida
alone, the nests for over 100 species have yet to be found or
described. This especially highlights the critical importance
of detailed field-based studies, rooted in natural history and
often carried out on small taxonomic groups in remote
regions—particularly in the Neotropics [109], for future work
on the evolution of nest design in birds. Finally, our study
adds to the growing body of work exploring the myriad influ-
ences on nest architecture not just in birds [11,14,26,110] but
also in non-avian reptiles [111], amphibians [112], fishes
[43,113], mammals [114,115] and insects [116]. Across these
taxonomic groups, determining the effects of predation [117],
habitat [118], thermal properties [119] and parental care [120]
on aspects of nest design is a timely goal.
Data accessibility. The datasets supporting this article is available from:
https://doi.org/10.6084/m9.figshare.21980333.v1. Range information
data is publicly available from www.birdlife.org; climate data from
www.worldclim.org; phylogenetic data from www.birdtree.org.

The data are provided in the electronic supplementary material
[121].
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