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Coevolutionary arms races are a potent force in evolution, and brood parasite-host dynamics provide classical examples. Different

host-races of the common cuckoo, Cuculus canorus, lay eggs in the nests of other species, leaving all parental care to hosts. Cuckoo

eggs often (but not always) appear to match remarkably the color and pattern of host eggs, thus reducing detection by hosts.

However, most studies of egg mimicry focus on human assessments or reflectance spectra, which fail to account for avian vision.

Here, we use discrimination and tetrachromatic color space modeling of bird vision to quantify egg background and spot color

mimicry in the common cuckoo and 11 of its principal hosts, and we relate this to egg rejection by different hosts. Egg background

color and luminance are strongly mimicked by most cuckoo host-races, and mimicry is better when hosts show strong rejection.

We introduce a novel measure of color mimicry—"color overlap”—and show that cuckoo and host background colors increasingly

overlap in avian color space as hosts exhibit stronger rejection. Finally, cuckoos with better background color mimicry also have

better pattern mimicry. Our findings reveal new information about egg mimicry that would be impossible to derive by the human

eye.

KEY WORDS: Arms race, brood parasitism, bird color space, coevolution, egg rejection, tetrachromatic.

Coevolutionary dynamics between brood parasites and hosts can
result in antagonistic arms races or stable equilibria (Davies 2000;
Svensson and Raberg 2010). Interactions between the common
cuckoo, C. canorus, and its hosts provide a classical example of
an evolutionary arms race, in which most hosts have evolved egg
rejection behavior. Selection pressure imposed by parasitism leads
to strong host adaptations to detect and reject foreign eggs and
to parasite counter-adaptations, including egg mimicry (Dawkins
and Krebs 1979; Rothstein 1990). The battle at the egg-laying
stage is critical because if the host fails to reject a parasitic egg,
it loses all offspring to the parasite and rears only the foreign
cuckoo chick (Davies 2000). Darwin (1872) and Wallace (1889)
both remarked on the sophisticated egg color mimicry achieved
by cuckoos, and many studies since have investigated the degree
of egg mimicry between brood parasites and hosts (e.g., Brooke
and Davies 1988; Davies and Brooke 1989; Moksnes and Rgskaft
1995). The majority of these studies relied on human vision,
yet humans have impoverished color vision compared to birds

© 2011 The Author(s).
1 Evolution

(Goldsmith 1990; Bowmaker et al. 1997; Hart 2001a; avian color
vision reviewed in Cuthill 2006). Unlike humans, birds have a
fourth single cone in their retinas that is sensitive to ultraviolet
(UV) wavelengths (reviewed in Hart 2001a; Cuthill 2006). Fur-
thermore, birds have double cones that are thought to play a key
role in achromatic tasks related to texture and pattern (Jones and
Osorio 2004). Although various other studies have used re-
flectance spectra to quantify egg mimicry objectively (e.g.,
Starling et al. 2006; Cherry et al. 2007), spectra do not reveal how
the signal is processed by the bird’s receptors and color channels.
Spectrometry fails to use the full range of techniques available to
model receiver vision and at times may even produce misleading
results (see e.g., Cassey et al. 2009; Higham et al. 2010).

Recent advances in our understanding of avian vision make
it possible to evaluate egg mimicry in a way that is relevant to
the signal receiver (i.e., hosts). Avian perceptual modeling has
been incorporated in several new studies with great success, indi-
cating that egg-rejection behavior is more accurately predicted
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when eggs are studied from the bird visual perspective (e.g.,
Avilés 2008; Cassey et al. 2008; Spottiswoode and Stevens 2010).
Cassey et al. (2008) showed that rejection of painted eggs by
song thrushes (Turdus philomelos) was predicted by an avian
perceptual model incorporating information from UV- and short
wavelength-sensitive cones. Avilés (2008) used perceptual mod-
eling to quantify chromatic and achromatic matching between
eggs of six races of the common cuckoo C. canorus and two
cavity-nesting hosts in Finland: the redstart (Phoenicurus phoeni-
curus) and pied wagtail (Motacilla alba). Avilés found that eggs
of redstarts and parasitic Phoenicurus-cuckoos are perceptually
similar, which may explain why few Phoenicurus-cuckoo eggs
are rejected by redstart hosts. More recently, egg rejection ex-
periments and modeling of avian color and pattern vision with
the African cuckoo finch (Anomalospiza imberbis) and its main
host the tawny-flanked prinia (Prinia subflava) have shown that
prinia use multiple independent pattern and color cues when de-
ciding whether to reject a foreign egg (Spottiswoode and Stevens
2010).

Previously, we documented the degree of pattern mimicry
between the common cuckoo and eight of its principal hosts in
Europe in terms of bird vision and showed that when host rejec-
tion was higher, cuckoo eggs matched host eggs more closely for
arange of independent pattern attributes, including marking size,
dispersion, contrast, egg coverage, and variation in marking size
(Stoddard and Stevens 2010). However, that study did not analyze
the color or luminance of either the egg background or markings.
Here, we use a visual discrimination model to quantify egg color
and luminance mimicry between the common cuckoo and 11 main
European hosts, for both egg background and spots, to determine
how difficult (on average) it would be for a host parent to detect
a cuckoo egg. In addition, we model the distributions of cuckoo
and host egg colors in avian tetrachromatic color space (Endler
and Mielke 2005; Stoddard and Prum 2008), which provides a
novel way of visualizing egg color mimicry. Following Stoddard
and Prum (2008), we calculate the volume of cuckoo and host
distributions, and we introduce a powerful new measure (“‘color
overlap”) to describe the overlapping volume of cuckoo and host
colors. Quantifying color overlap reveals how closely the range
of possible cuckoo egg colors corresponds to the range of host
egg colors in terms of avian vision. Finally, it is often argued that
the level of mimicry of host eggs achieved by a cuckoo is an out-
come of the selection pressure hosts place on cuckoos by rejecting
foreign eggs (both in terms of intensity and the amount of evo-
lutionary time both parties have been coevolving). We therefore
evaluate the extent to which color mimicry is explained by host
rejection rates reported in the literature (Avilés and Garamszegi
2007). We link our current findings to previous work investigat-
ing pattern mimicry by common cuckoos to determine if cuckoos
with more effective color mimicry also tend to have more ef-
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fective pattern mimicry (Stoddard and Stevens 2010). Although
this outcome may seem intuitive, it is by no means certain given
that color and a range of pattern attributes have previously been
shown to be uncorrelated and used independently in egg rejection
in other systems (Spottiswoode and Stevens 2010).

Methods

DATA COLLECTION

We obtained reflectance spectra from cuckoo and host eggs in 248
parasitized clutches held in the Natural History Museum (NHM;
Tring, Hertfordshire, UK), with clutches belonging to 11 principal
cuckoo hosts in Europe: great reed warbler (Acrocephalus arun-
dinaceus, n = 25), meadow pipit (Anthus pratensis, n = 16), reed
warbler (Acrocephalus scirpaceus, n = 25), sedge warbler (Acro-
cephalus schoenobaenus, n = 15), robin (Erithacus rubecula,
n = 26), brambling (Fringilla montifringilla, n = 14), red-backed
shrike (Lanius collurio, n = 25), pied wagtail (M. alba, n = 25),
dunnock (Prunella modularis, n = 27), redstart (P. phoenicurus,
n = 24), and garden warbler (Sylvia borin, n = 26). The ma-
jority of eggs were collected between 1880 and 1910 in several
European countries (Supporting Information: Data collection).
To avoid pseudoreplication (measuring multiple cuckoo eggs laid
by the same female), we used clutches from different localities,
or, when this was not possible, clutches acquired several years
apart or by different collectors. For each parasitized clutch, we
measured one cuckoo egg and one randomly selected host egg.

SPECTRAL MEASUREMENTS OF EGGS

We obtained reflectance spectra for each egg using an Ocean Op-
tics USB4000 spectrometer (Dunedin, FL) with illumination by a
PX-2 pulsed Xenon lamp. We used a narrow-ended (1/8"") probe
held at a constant distance and a 45° angle to the egg surface to
measure reflectance at the top, middle, and base of the egg. Two
measures (one background, one spot) were taken from each egg
region, recorded at 1-nm intervals from 300 to 700 nm, expressed
relative to a Spectralon™ 99% white reflectance standard (Lab-
sphere, Congleton, UK), and then averaged across egg region to
yield one mean background spectrum and one mean spot spec-
trum per egg (Fig. S1). For the meadow pipit and its respective
cuckoo host-race (gens), eggs are so densely spotted that only two
background and two spot measurements were possible per egg.
For the sedge warbler and its respective cuckoo host-race, eggs
are almost uniformly covered with “spots,” so one measurement
(including portions of “background” and “spot”) was taken per
egg region and subsequently averaged. Eggs of the great reed
warbler and its cuckoo have dark and light spots; for these eggs,
two dark and two light spots were measured per egg.
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Figure 1. Photographs of cuckoo (left) and host (right) eggs are
shown with their background and spot color distributions in avian
tetrahedral color space, illustrating the extent of color overlap be-
tween cuckoos (red) and hosts (blue). Distributions have been en-
larged from their original positions in the tetrahedral color space
and are all shown on the same scale, except for the light spot
(left) and dark spot (right) distributions for great reed warbler,
shown at 50%. Distributions have been rotated around the ver-
tical axis to better show regions of overlap. Eggs of the sedge
warbler and its cuckoo were so densely covered with spots that
only one color (including portions of background and spot) was
measured, shown here as the background color. Photographs of
eggs within the figure are copyright of the NHM and UMZC (sedge
warbler-cuckoo and sedge warbler eggs) and were taken by Mary
Caswell Stoddard.

MODELING AVIAN QUANTAL (PHOTON) CATCHES
AND DISCRIMINATION

To determine how well cuckoo eggs matched those of their hosts,
we quantified the difference in avian color and luminance percep-
tion. Two classes of color vision exist in birds, in which the fourth
color cone uses UV-sensitive (UVS) or violet-sensitive (VS) opsin
pigments (reviewed in Cuthill 2006). Except for Corvidae, Tyran-
nidae, and Meliphagidae, passeriformes are thought to have UVS-
type cones (Odeen and Hastad 2003, 2010). Therefore, to estimate
how eggs appear to passerine hosts, we used average egg spectra to
model the photon catches of the single and double cones of a blue
tit Cyanistes caeruleus (Hart et al. 2000). The red-backed shrike
(L. collurio) belongs in the family Laniidae, which is closely re-
lated to VS Corvidae (Barker et al. 2004; Hackett et al. 2008).
It has not yet been determined in any Laniidae species whether
the UVS or VS visual type prevails. To account for any error
associated with misattributing the visual system in this species,
we repeated discrimination and tetrachromatic color analyses for
Red-backed shrike using a VS peafowl model (Hart 2002). Color
vision in birds stems from the four single cone types (reviewed
in Cuthill 2006), whereas luminance-based tasks are thought to
stem from the double cones (Jones and Osorio 2004). We modeled
both color and luminance discrimination using irradiance spectra
collected from a UK deciduous woodland environment (Mading-
ley Woods, Cambridgeshire) with an Ocean Optics (Dunedin, FL)
cosine-corrected spectrometer. We repeated the analyses treating
the irradiance spectrum as a constant with an integral equal to
1 (Stoddard and Prum 2008) and found that chromatic contrasts
were strongly correlated with those calculated using woodland
light (R? = 0.996), as predicted by the efficacy of the von Kries
transformation and color constancy (Vorobyev et al. 1998; Stod-
dard and Prum 2008). Likewise, previous work modeling avian
egg colors has shown that using different irradiant light spectra has
a minimal influence on modeled photon catch values (Langmore
et al. 2009).

To determine color contrasts, we calculated the discrim-
inablity of cuckoo and host eggs according to the log form of
the Vorobyev and Osorio (1998) receptor noise model. We used a
Weber fraction value of 0.05 (for the most abundant cone type),
and relative proportions of cone types in the retina for a blue tit
(longwave = 1.00, mediumwave = 0.99, shortwave = (0.71, and
UVS = 0.37; Hart et al. 2000). Cone abundance ratios can vary
substantially between species (Hart 2001b) and may lead to dif-
ferences in color discrimination (Lind and Kelber 2009); unfortu-
nately the relative cone proportions have not yet been determined
for any of the species in this study and are only known for a hand-
ful of birds (Hart 2001b). For modeling red-backed shrike colors
with VS sensitivity, we retained blue tit cone proportions rather
than using very similar data for peafowl (longwave = 0.96, medi-
umwave = 1.00, shortwave = 0.85, UVS = 0.46, Hart 2001b),

EVOLUTION 2011 3
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which are not necessarily more similar to red-backed shrike than
are data for blue tit. We used blue tit cone ratios consistently
throughout the study to ensure that differences we detected were
due to differences in color sensitivity rather than relative cone
abundances and noise levels. To model luminance discrimina-
tion, we followed Siddiqi et al. (2004) in calculating the dif-
ference between two stimuli for the double cones. The results of
these models are expressed in “just noticeable differences” (JND),
where generally a JND of less than 1.00 indicates that two stimuli
are indistinguishable, with values increasing above 1.00 indicat-
ing more rapid discrimination (Siddiqgi et al. 2004). For each
cuckoo egg, we calculated the chromatic and achromatic con-
trasts (JND) between every available host egg for that species and
used the mean chromatic and achromatic contrasts in subsequent
analyses.

MODELING RECEPTOR STIMULATION IN
TETRAHEDRAL COLOR SPACE

We analyzed the relative cone stimulation of avian reflectance
spectra in tetrahedral color space (Goldsmith 1990; Endler and
Mielke 2005), using TETRACOLORSPACE with MATLAB 7 (Stod-
dard and Prum 2008). Avian tetrahedral color space provides
a convenient, quantitative representation of bird color based on
well-established cone-type sensitivities. It is not identical to a
bird’s true sensory experience, which likely involves opponent
mechanisms, color categorization, and complex psychophysical
processing. Until much more is known about these complicated
processes in birds, tetrahedral color space allows us to describe
avian colors in a straightforward way that is relevant to bird vision
and makes fewer assumptions than more complex models. Photon
catch values of eggs were normalized to sum to one and converted
to a point in color space with X, Y, and Z coordinates (Endler and
Mielke 2005), with this position in the color space determined
by the relative stimulation of the four color cone types. For each
cuckoo host-race and host species, all egg colors were plotted as
points in the tetrahedral color space and overall color space oc-
cupancy was quantified using MATLAB’s “convhulln” (Stoddard
and Prum 2008). The volumes of each cuckoo and host distribution
provide a measure of intraspecies color variation. A new measure
(“color overlap”) was developed to describe the extent to which
cuckoo and host color distributions overlap. Given that an indi-
vidual cuckoo parasitizes multiple host nests, quantifying color
overlap is useful for considering how well a cuckoo egg matches
a host egg on average: given a particular cuckoo egg, what is the
likelihood that it falls within the range of host egg colors? Color
overlap is expressed as the percentage of the host volume over-
lapped by the cuckoo volume. This was estimated using a Monte
Carlo simulation; determining an exact solution was not possible
given the complexity of intersecting convex polyhedra. For each
simulation, we generated a sphere of 750,000 random points in
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tetrahedral color space around the center of the cuckoo and host
distributions, so that both distributions were completely encom-
passed. We then determined the volume of random points that
fell inside both the cuckoo and host volumes (the estimated color
overlap; see Supporting Information: Calculating color overlap).

In avian tetrahedral color space, each egg color can be defined
by a vector. Hue is defined as the direction of the color vector and
is described by angles 6 and ¢, which are analogous to longitude
and latitude. Chroma, or saturation, is given by the magnitude
of r, or its distance from the achromatic origin (Fig. S2). Hue
and saturation were characterized for all eggs, and average color
span, average hue disparity, and volume were measured for all
egg distributions (Table S1; and see Stoddard and Prum 2008).
We used Robinson projections to analyze the hue distributions
of egg colors independently of saturation (Fig. S3). Egg colors
can be projected onto a sphere centered at the achromatic origin
of the tetrahedron; the Robinson Projection is a two-dimensional
projection of the sphere (commonly used as a representation of

the earth’s surface).

COMPARISON WITH REJECTION RATES

We compared overall background and spot color mimicry to pre-
viously established rejection rates of nonmimetic eggs by hosts.
Rejection rates vary widely and depend on parasitism rates and
host experience (Davies 2000); we therefore refer to rates deter-
mined directly by Davies and Brooke (1989) in the Supporting
Information, but here we primarily use rates calculated from pub-
lished and unpublished sources compiled in Avilés and Garmszegi
(2007), as only this study includes rejection rates for all species
analyzed here. In our analyses, we have treated each species as
an independent datapoint rather than controlling for phylogeny.
Kilner (2006) demonstrated that evolutionary history is unlikely
to have imposed much constraint on the evolution of egg appear-
ance by cuckoo hosts; regardless of their evolutionary history,
hosts can counter attacks by brood parasites by changing their
egg coloration.

COMPARISON WITH PATTERN MIMICRY

We compared color mimicry (in terms of JND) with five pattern
variables (marking size, diversity in size, contrast, coverage, and
dispersion) measured for the eight species analyzed in Stoddard
and Stevens (2010). For each cuckoo-host pair, we plotted color
mimicry against the number of matching pattern attributes to
determine whether cuckoos with better color mimicry also achieve

better pattern mimicry.

Results
Distributions of cuckoo and host colors, for both the egg back-
ground and spots, illustrate the extent of overlap in avian
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tetrahedral color space (Fig. 1). Background color overlap, or
the percent overlap of host background colors by cuckoo col-
ors, is correlated with rejection rate (R = 0.4678, P = 0.02,
linear regression, Fig. 2A). Spot color overlap is not correlated
with rejection rate (R? = 0.0009, P = 0.93, linear regression,
Fig. 2B). In terms of mean discrimination values (JND), mimicry
of background egg color improves where hosts show strong
rejection (R =0.6781, P < 0.01, logarithmic regression, Fig. 3A).
Improvement in color match with rejection becomes less pro-
nounced as colors become close to indistinguishable (JND < 2.5;
Fig. 3A). Luminance mimicry of the egg background improves
moderately as hosts become more discriminating (R> = 0.3004,
P = 0.08, linear regression, Fig. 3B). Neither spot color nor lu-
minance mimicry is related to host rejection (color: R? = 0.0017,
P =0.91, linear regression, Fig. 3C; luminance: R2=0.0100,P =
0.78, linear regression, Fig. 3D). These results were unchanged
when we removed sedge warbler and its cuckoo, for which we did
not obtain separate background and spot color spectra, from the
analysis. A comparison of background color mimicry (JND) to the
number of matching pattern attributes for eight species (measured
in Stoddard and Stevens 2010) shows that cuckoos with better
color matching also achieve more sophisticated pattern matching
(Fig. 4). Reflectance spectra (Fig. S1) and Robinson projections
(Fig. S3) further document the degree of color and luminance
mimicry.

We repeated JND and tetrachromatic color analyses for the
red-backed shrike and its cuckoo using a VS peafowl model.
Compared to UVS vision, the relative photon catch values of
egg background colors modeled with VS vision differed by less
than 0.03 in each of the cone channels. For spot color photon

catches, modeling with VS vision changed photon catches by less
than 0.02. Under the UVS model, the cuckoo achieves a
1.75 JND match to red-backed shrike background color and a
2.43 JND match to spot color. Under the VS model, the cuckoo-
host background color difference is 1.31 JND and spot difference
is 2.07 JND. For more detailed results, see Supporting Informa-
tion: Background color mimicry as it relates to rejection rate.

Discussion

Here we have used avian visual modeling to quantify egg back-
ground and spot mimicry for color and luminance between the
common cuckoo and 11 European hosts. Our results show that
background appearance is strongly mimicked by most cuckoo
host-races, with the best color and luminance matches achieved
by cuckoos parasitizing hosts with strong rejection (Figs. 2A
and 3A,B). Unlike background, spot mimicry for color or lu-
minance is not strongly related to host rejection rates (Figs. 2B
and 3C,D), suggesting that the pattern of spots may be more
important for successful egg mimicry than the color of spots.
Analysis of cuckoo and host egg colors in avian tetrahedral color
space reveals that some cuckoo distributions prominently overlap
those of their hosts, whereas others remain completely isolated in
color space (Fig. 1). Mapping egg colors in avian tetrachromatic
space revolutionizes our understanding of mimicry by capturing
color variation and by illustrating which regions of color space
are occupied by cuckoos and hosts. We employ a powerful new
measure, color overlap, to complement discrimination modeling

as a measure of color mimicry, and we advocate its use in future
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studies of avian color. Both approaches provide support for the
conclusion that cuckoos have evolved better background, but not
spot, color mimicry to evade the most discerning hosts. As with
background color, egg pattern mimicry improves as hosts show
stronger rejection (Stoddard and Stevens 2010). We show for the
first time that cuckoos with better background color mimicry also
have better pattern mimicry (Fig. 4).

Classical work on egg polymorphisms of the common cuckoo
indicated that cuckoos and hosts are at various stages of a co-
evolutionary arms race (Brooke and Davies 1988; Davies and
Brooke 1989). Our color analyses reveal that cuckoos lay a bet-
ter matching egg where the host species is more discriminating;
this is particularly true for background color mimicry and, in a
previous study, for pattern too (Stoddard and Stevens 2010). The
dunnock-cuckoo egg, which is white with brown speckling (to hu-
man eyes), is a poor match to the immaculate blue dunnock egg.
Accordingly, the background colors of the dunnock-cuckoo and
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dunnock are completely isolated in avian color space and should
be discriminable (Fig. 1). Despite the obvious color mismatch,
dunnocks readily accept foreign eggs and are thought to be at an
early stage of the coevolutionary arms race, having not yet evolved
host defenses (Davies 2000). The sedge warbler-cuckoo achieves
a slightly better color match to its host, which is clearly illustrated
by the close proximity (but still no overlap) of the cuckoo and
host color distributions in color space (Fig. 1). Like the dunnock,
the sedge warbler rarely rejects nonmimetic eggs and is likely at
an early stage of the arms race (Davies and Brooke 1989).

In response to the evolution of stronger host defenses, cuck-
oos likely developed better background color mimicry. Where
hosts show modest rejection, as in the robin, meadow pipit,
and reed warbler, the cuckoos generally achieve better back-
ground matching and increased overlap of host colors (Figs. 1,
2A, and 3A). Redstarts also show modest rejection, and indeed
the redstart-cuckoo achieves a decent color match on average to
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host eggs (Fig. 3A). Surprisingly, however, the distribution of
redstart-cuckoo background colors fails to intersect that of the
host (Fig. 1). Both cuckoo and host eggs are immaculate blue
and often appear mimetic to the human eye, yet there is a clear,
quantifiable difference between the blue colors.

Cuckoo mimicry of background color is most impressive
among hosts showing strongest rejection, including garden war-
bler, great reed warbler, pied wagtail, and red-backed shrike
(Fig. 3A). The cuckoo that parasitizes the red-backed shrike,
which is the strongest egg rejecter, achieves the highest color
overlap: the cuckoo and host distributions are completely super-
imposed (Fig. 1), with cuckoo colors overlapping the majority of
the host volume.

Surprisingly, spot color matching did not improve with host
rejection rate. Although spot color matching does not relate to
the discrimination ability of hosts (Figs. 2B and 3C), modeling
in tetrachromatic color space indicates that spot colors are in-
deed mimicked (Fig. 1). All spot color distributions overlap in
color space with the exception of the reed warbler and its cuckoo,
where the brown spots of the cuckoo do not intersect the olive
green speckling of the host (Fig. 1). This suggests that some level
of spot color matching may be essential for successful mimicry,
but a strong match of host spot color may be less crucial than
a strong match of background color. Our previous work (Stod-
dard and Stevens 2010) shows that detailed aspects of pattern
mimicry improve with host discrimination ability, suggesting that
spot arrangement rather than spot color is critical for effective
egg-copying: future egg rejection experiments could test this hy-
pothesis directly.

Most cuckoo host-races have evolved background colors
that appear highly mimetic and difficult to distinguish (i.e., with

IJND < 3; Siddigqi et al. 2004). However, the tremendous variation
of host rejection rate in this range and the steady improvement of
background matching with increasingly strong rejection (Fig. 3A)
suggest that host discrimination and cuckoo color mimicry are
more nuanced and complex than previously illustrated. Interest-
ingly, background color mimicry no longer improves as colors
become very difficult to discriminate (1-2 JND). As colors be-
come almost indistinguishable, other cues such as luminance or
pattern may be preferentially used. Color tends to be used at
moderate-to-high light levels, whereas achromatic information
may take on a greater importance under low light (Vorobyev and
Osorio 1998), including in cuckoo egg appearance (Avilés 2008;
Langmore et al. 2009). We might therefore expect egg patterns
(which are principally encoded by luminance) to become espe-
cially important where color cues are no longer used. Accordingly,
we found that cuckoo host-races achieving the best color match
(JND < 2.5; i.e., garden warbler, pied wagtail, great reed warbler,
and red-backed shrike) are also those with the most sophisti-
cated egg pattern mimicry (Fig. 4, and see Stoddard and Stevens
2010).

Our study did not include modeling of ambient light levels,
which can affect the ability of a receiver to discriminate between
two objects. At low light levels, such as in dark nests, discrimina-
tion ability is reduced; in addition to Weber-based receptor noise,
as modeled here, noise also arises in the photoreceptors due to
actual variations in photon catch (Osorio et al. 2004). It is possible
that the level of mimicry in some species, such as the redstart-
cuckoo, is actually better than our results imply when hosts nest
in dark light conditions. Although versions of the discrimination
model we used here are available for low light levels (Osorio
et al. 2004; Schaefer et al. 2007; Langmore et al. 2009), at present
we do not know the light level at which photon-noise becomes
involved and limits discrimination; previous incorporations of
photon-limited noise in models have used only rough approxima-
tions of this variable (Osorio et al. 2004; Langmore et al. 2009).
Therefore, it would not have been appropriate to include this ap-
proach with our modeling, as it may have unfairly biased the level
of mimicry in favor of dark-nesting species. In the future, when
more is known about the psychophysics of discrimination at low
light levels, modeling should be made more realistic by including
such information. Further work should also investigate the light
levels at which achromatic mechanisms become relatively more
important than color ones for discrimination or detection, as this
may be important in some cuckoo hosts with dark nests (e.g.,
Avilés 2008; Langmore et al. 2009). Owing to color constancy in
vision and the fact that most terrestrial light environments vary
relatively little (compared to marine environments, for example),
it is unclear whether we expect differences in rejection behavior
and the visual cues used to occur in different habitats, although
this would be interesting to test.
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What evolutionary mechanisms have led to excellent
mimicry by cuckoos parasitizing the pickiest hosts, yet poor
mimicry by cuckoos targeting less discriminating hosts? The
high price of parasitism on hosts has likely led to a full-blown
coevolutionary arms race, in which many hosts have evolved de-
fenses in the form of egg detection and rejection abilities, and
many cuckoo host-races have evolved highly mimetic eggs as a
counter-response (Rothstein 1990; Davies 2000). Thus, host dis-
crimination against badly matching eggs is the selective force
maintaining the distinct cuckoo host-races and driving the evolu-
tion of egg mimicry. The conundrum of why many hosts accept
nonmimetic eggs continues to baffle biologists: explanations for
this phenomenon usually fall in two categories. Under the coevo-
lutionary lag hypothesis, some naive hosts are still at early stages
of the evolutionary arms race and so accept alien eggs, having not
yet evolved defenses against parasitism (Davies 2000). Under the
equilibrium hypothesis, tolerating cuckoo eggs may be the most
stable strategy for some hosts if the cost of recognition errors is
high and the cost of parasitism is low (Lotem et al. 1995). As
an alternative to resistance, tolerance may have important and
oft-overlooked implications for the coevolutionary dynamics of
brood parasitism (Svensson and Raberg 2010). Both hypotheses
rely on a learning process involved in host egg recognition. Hosts
are thought to memorize their own egg type; they can be tricked
into imprinting on the wrong egg type if their own eggs are re-
placed with another’s during their first season (Lotem et al. 1995).

In this study, we have used host rejection rates as a proxy
for the level of selection imposed by host species on cuckoos
and as an estimate for the evolutionary stage that each cuckoo
host-race and host species pair has reached in the arms race. In
the future, it would be valuable to relate the level of color and
pattern mimicry achieved by each cuckoo host-race to the amount
of time they have been independently evolving (using molecular
clock data and phylogenies). Unfortunately, this information is
currently unavailable and recent work (Gibbs et al. 2000) indicates
that cuckoo host-races have switched hosts on various occasions
during their evolution.

Although the precise mechanism by which hosts detect and
reject cuckoo eggs remains unclear, our analyses indicate that dif-
ferent hosts use different cues in egg recognition (of their own and
foreign eggs) and rejection. The brambling-cuckoo, for example,
has the best pattern mimicry (all five matching pattern elements,
Fig. 4) and good luminance mimicry (Fig. 3B), but not a high
match to host background color (Fig. 3A). For the brambling,
pattern or luminance cues may provide critical signature informa-
tion for egg discrimination, making a perfect background color
match by the brambling-cuckoo less important. Recent evidence
from hosts of the African cuckoo finch indicates that multiple cues
are used to reject foreign eggs, with color and pattern each con-
tributing approximately 50% of the visual cues used in rejection
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decisions (Spottiswoode and Stevens 2010). However, the relative
significance of color, luminance, and pattern cues in discrimina-
tion tasks—and the extent to which they may have coevolved—is
largely unknown in hosts of the common cuckoo. Our results
here, and in our previous study of pattern mimicry (Stoddard and
Stevens 2010), reveal remarkable nuance and complexity of egg
color and pattern, in terms of mimicry and host discrimination.
This raises the intriguing question of why both color and pattern
mimicry, in many cases, have evolved to be exceptional, while
other seemingly obvious cues (to human eyes) like egg shape and
size do not seem to be readily mimicked by cuckoos or used by
hosts (but see Marchetti 2000 for an exception). One possibility
is that the physical challenges of modifying egg size and shape
may prohibit these forms of mimicry. Color and pattern may be
more flexible traits, liberated from constraints on body size and
oviduct morphology. However, coevolutionary interactions have
clearly influenced egg traits beyond color and pattern: for ex-
ample, cuckoos facing the fiercest host rejection have evolved
thicker eggshells to resist rejection by puncture (Spottiswoode
2010). The poor ability of cuckoos to mimic egg size and shape
is puzzling, but more curious is why hosts neglect to use these
apparently straightforward cues when making rejection decisions.
Perhaps hosts’ excellent capacity for color and pattern recogni-
tion precludes the need for attention to size- and shape-based
cues. Alternatively, hosts may fail to reject large eggs because
the cost of making a recognition error is high. If large eggs result
from greater investment, the host risks ousting its best egg by mis-
take. Clearly, much more work is required to better understand
the evolutionary mechanisms underlying egg mimicry, including
rigorous egg rejection experiments to disentangle exactly which
cues are used by various hosts to detect foreign eggs.
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Supporting Information

The following supporting information is available for this article:

Figure S1. Reflectance spectra of cuckoo and host background and spot colors.

Figure S2. A tetrahedral avian color space (reproduced from Stoddard and Prum 2008).

Figure S3. Robinson projections of egg (A) background and (B) spot colors illustrate the distributions of cuckoo and host hues
independent of their saturation.

Table S1. Summary statistics describing cuckoo and host egg colors (background and spot).

Table S2. Estimated and corrected color overlap values for background and spot distributions.

Supporting Information may be found in the online version of this article.

Please note: Wiley-Blackwell is not responsible for the content or functionality of any supporting information supplied by the
authors. Any queries (other than missing material) should be directed to the corresponding author for the article.
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